<!--go-->
第二百七十五章
【……绝对Galois群Gq作用在Tate模Tp(E)上,满足αζ=ζ+1-|E(Ft)|.】
写到这,顾律停笔。
摸着下巴思索了几秒,顾律重重的在最后一行公式下面划了两行横线。
咚咚!
顾律敲敲黑板,把数学家们的思绪拉回来。
他指着占满半块小黑板的公式,微笑着开口,“这就是我说的那个有趣的东西。”
众人凝神望向顾律手指的方向。
顾律微笑着解释道,“简单的来概括的话,就是说如果存在E是Q上椭圆曲线,以L表示具有好约化的素数的集合,此时可定义整数数列(αζ)ζ∈L,也就是椭圆曲线的D有理点等于方程解的个数+1!”
顾律话音一落,下面的那群数学家交头接耳,相互之间小声的议论着。
作为几何数学家,尤其还是世界上算是比较顶尖的那一批,他们自然是识货的。
众人从头到尾再把顾律写在小黑板的上的公式反复看了几遍,皆是一脸的凝重。
顾律刚才讲述的内容,是利用Galois表示的方法,将有限域上的方程和复数域上的椭圆曲线紧密联系起来。
要知道,复数域几何一直都属于几何领域的沙漠地带,其冷门程度,不亚于曾经的双有理几何。
只不过,由于顾律攻克了极小模型纲领的两大难题,才使得双有理几何成为一个热门的研究方向。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.yuesekanshu.com
(>人<;)